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Abstract

Software systems are designed and implemented with assumptions about the environment. How-
ever, once a system is deployed, the actual environment may deviate from its expected behavior,
potentially leading to violations of desired properties. Ideally, a system should be robust to continue
establishing its most critical requirements even in the presence of possible deviations in the environ-
ment. To enable systematic design of robust systems against environmental deviations, this work
proposes a rigorous behavioral notion of robustness for software systems. Then, it presents a tech-
nique called behavioral robustification, which involves two tactics to systematically and rigorously
improve the robustness of a system design against potential deviations.

Specifically, the robustness of a system is defined as the largest set of deviating environmental
behavior under which the system is capable of guaranteeing a desired property. Then, we present an
approach to compute robustness based on this definition. On the other hand, the system is not robust
against an environment when the environment exhibits deviations causing a violation of the desired
property. The robustification method finds a re-design that is capable of satisfying the property
under such a deviated environment. In particular, two tactics, namely wrapper and specification
weakening, are introduced. We show that how the robustification problem can be formulated as
a multi-objective optimization problem with the goal of guaranteeing the desired property, while
maximizing the amount of existing functionality and minimizing the cost of changes to the original
design.

The proposed robustness computation and robustification methods are implemented in a tool,
named Fortis. The applicability and efficiency of these approaches are evaluated through experi-
mental results across five case studies, including a radiation therapy machine, an electronic voting
machine, network protocols, a transportation fare system, and an infusion pump machine.
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Chapter 1

Introduction

1.1 What is Robustness?

A software system is designed and implemented with respect to a specification, which typically,
both explicitly and implicitly, makes assumptions about the operating environment. When these
assumptions are satisfied, the system is expected to ensure particular functionalities and quality
attributes. Nowadays, software systems are applied in diverse domains such as fiance, healthcare,
manufacturing, aerospace, autonomous vehicles, and online services. With the increasing capability
of software systems, both the systems and their operating environments grow in complexity. It is
increasingly common that once a system is deployed, the actual environment may deviate from its
expected behavior as described in the specification. For example, an online web application might
experience message loss or disruption; a user interacting with a medical device might inadvertently
perform actions in the wrong order; or an aircraft might operate in extreme weather conditions,
causing sensors to produce inaccurate observations. In such scenarios, the system may not be able to
continue providing its assured functionalities or maintaining its specified quality, thereby exposing
it to potential risks or failures. From a high-level, robustness characterizes the capability of a
system to consistently fulfill its commitments even under unexpected circumstances. Therefore, the
assurance of software robustness becomes increasingly crucial as system complexity grows, especially
for mission-critical or safety-critical systems, such as financial systems, aircrafts, or medical devices
[56].

IEEE standards define robustness as the ability of a software system to continue functioning
correctly in the presence of invalid inputs or stressful environment [1]. Avizienis et al. [5] further
characterizes robustness as a secondary attribute of dependability, i.e., dependability with respect to
external faults. However, these definitions are overly abstract in that they cannot be directly used
to help developers analyze the robustness of a system; and the term “robustness” tends to carry
different interpretations in various sub-domains of software.

We classify software systems into three categories: Conventional software systems, Machine
learning (ML) systems, and Cyber-physical systems (CPS). Here, conventional systems refer to
systems such as operating systems, communication systems, distributed systems, or web services,
whose fundamental behavior can be conceptualized through discrete transition systems [37, 25]. ML
systems refer to systems with ML components that are statistical models trained against certain
datasets. CPS are systems that closely interact with the physical world such as autonomous vehicles.
While clear boundaries within this classification do not exist, it is a widely adopted framework in
the literature; and robustness definition and evaluation techniques vary significantly across these
domains.

Based on this classification, the emphasis of this work is on the robustness of conventional software
systems, particularly the robustness with respect to “the correctness of system behavior”. This form
of software robustness has been widely investigated in the literature, with correct system behavior
often characterized as the correctness of the system output or the absence of system failures.

4



Behavioral Robustness and System-Level Property. Nevertheless, the term “software sys-
tem behavior” is often used vaguely. It generally refers to how a system reacts and responds to
various inputs or events. To precisely delineate the type of robustness studied in this work, it is
necessary for us to define the meaning of software behavior.

• Input-Output Relationships: In this perspective, a software system often corresponds to a
functional procedure, such as a system call in an operating system or an API of a web service.
The system behavior is characterized by how it processes inputs and generates corresponding
outputs, with the unexpected behavior of the environment characterized by invalid inputs.
Specifically, a developer makes assumptions about the input values of a function, e.g., a non-
negative integer input for computing a factorial. Then, an invalid input is an input value
outside the assumed range. Thus, robustness of this kind studies whether the system would
produce erroneous outputs given certain inputs that are outside the assumed range.

• States and Transitions: In this view of software behavior, a software system is explicitly mod-
eled as a discrete transition system. An execution of the system is defined as a sequence of the
system states and their transitions, and the system behavior is the set of all possible execu-
tions. Under this definition, two types of properties are often used to specify the correctness of
behavior: safety property and liveness property. A safety property defines the bad states that
a system should avoid, while a liveness property defines the desirable states that the system
should reach [43]. Robustness of this type assesses the ability of the system to maintain the de-
sired property under unexpected behavior from the environment. Additionally, we specifically
focus on unexpected behavior as sequences of environmental events (transitions) that occur
during an actual operation and are not defined in the assumed environment when designing
the software.

We use the term behavioral robustness to denote robustness with respect to the behavior of system
states and transitions, and use IO robustness to indicate the robustness of input-output relationships.
In this work, our focus is on the behavioral robustness.

System, Machine, and Environment. Another concern is the term “system”. In the context
of system behavior as states and transitions, there is often an explicit distinction made between the
software and its environment, collectively forming a closed system. A closed system is one that does
not interact with other elements in the external world. However, in the input-output perspective, a
system refers to a procedure that takes certain inputs and produces outputs, with the environment
generating the inputs implicitly defined. To avoid this potential confusion, we will use the term
machine to represent the software and use system to denote the composition of a machine and its
operating environment.

Therefore, we also make a clear distinction between the properties associated with these two per-
spectives on behavior. We use IO property to indicate a property of the input-output relationships,
and use system-level property to denote a safety or liveness property at the level of the system (i.e.,
machine and environment) as a whole.

Finally, we define that this work investigates the behavioral robustness that captures the ability
of a machine to maintain a desired system-level property in the presence of unexpected sequences of
events from its environment.

1.2 Robust-by-Design Software

The objective of this research is to investigate how developers can construct behaviorally robust
software, with a specific emphasis on software design. Although in software engineering practices,
the significance of system design is often overlooked [56] with engineers placing greater emphasis on
implementation and testing phases, it is also widely acknowledged by industrial practitioners and
academics that the longer an issue lingers in the system, the more effort it requires to resolve [13].
Moreover, for safety-critical or mission-critical systems, establishing a “correct” design that ensures
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Figure 1.1: Robust-by-design development process.

robustness is even more crucial, given that a failure may be deemed unacceptable, and fixing defects
in later phases can become exceedingly costly or, in some cases, unfeasible. Therefore, this work
specifically focuses on the behavioral robustness of software designs.

We adopt a robust-by-design development process, as illustrated in Figure 1.1. In this process,
developers start with an initial machine design that operates effectively under normal environmental
conditions. Subsequently, they conduct an analysis to evaluate the robustness of the machine. This
analysis may not only reveal the invalid inputs or faults that lead to robustness violations but
may also quantitatively or qualitatively quantify the degree of robustness. Consequently, with these
analysis results, developers then modify or redesign the machine to enhance its robustness, especially
if the initial design does not meet the specified requirements. Additionally, developers can measure
the robustness of the new design and compare it with the old design, uncovering potential design
trade-offs, such as additional costs or the sacrifice of certain functionalities for ensuring robustness.
This iterative process may be repeated multiple times until a satisfactory level of design robustness
is achieved.

To support this development process, we argue that a methodology with the following capabilities
is crucial. Specifically, it should be able to:

• systematically and rigorously quantify the degree of robustness of a machine, compare the
robustness of two machines, and identify robustness vulnerabilities if they exist,

• systematically and rigorously improve machine robustness in response to the identified robust-
ness vulnerabilities.

While such design and development practices are prevalent in other well-established engineering
disciplines such as aerospace, civil, and manufacturing [58], existing techniques in software robustness
lack sufficient support for this process.

1.3 Robustness Assessment and Improvement

As outlined in the robust-by-design process, it comprises two crucial activities: robustness assessment
and robustness improvement. According to the surveys by Shahrokni et al. [63] and Laranjeiro et
al. [46], robustness assessment techniques for conventional software are predominantly experimental,
with a primary focus on robustness testing against a software implementation rather than a software
design. Furthermore, most of these techniques concentrate on the IO robustness of a machine, which
contrasts with the behavioral robustness that we investigate in this study.
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For improving software robustness, the prevalent approach involves using wrappers over existing
functions and components to mask and prevent the propagation of errors. However, these methods
also predominantly center around software implementation and IO robustness. On the other hand,
the self-adaptive system community [48] and the run-time assurance community [31] explore how to
ensure the run-time correctness of a system, which aligns more closely with our notion of behavioral
robustness.

Robustness Assessment Techniques. According to the surveys [63, 46], existing testing-based
robustness assessment methods typically answer the following questions:

Is the machine (implementation) robust against certain type of invalid inputs or faults?
Will the machine crash or generate erroneous outputs?

To address these questions, researchers commonly adopt a testing pattern that involves: (1) gener-
ating and providing invalid inputs or faults to the machine under test; and (2) assessing whether the
machine produces erroneous outputs or exhibits unexpected behavior, such as crashes. The most
prevalent evaluation methods include fault injection [7, 54], where developers intentionally introduce
specific types of faults to the machine or its environment, and model-based testing [68], where a
formal model is employed to generate test cases executed on the concrete machine implementation.
Additional methods include fuzzing [14, 51], which automatically and randomly generates extensive
inputs, model-based analysis, which formally models and verifies the robustness of a machine [4],
and mutation testing, which aims to enhance the quality of test cases for detecting more faults
[40, 61, 28].

However, robustness testing methods such as these fail to address our objective, i.e., the assess-
ment method should be able to systematically and rigorously quantify the degree of robustness of a
machine. In other words, they fail to answer the following question:

What is the set of all invalid inputs or faults that the machine is robust against?

While testing-based methods excel at identifying robustness violations, they often cannot offer ro-
bustness guarantees when no violations are detected. In such instances, it remains unclear whether
we should allocate additional resources to conduct the robustness tests, or if the machine can be con-
fidently deemed robust. Moreover, determining which machine is more robust than another based
solely on testing results is challenging. Additionally, a large portion of these methods focus on IO
robustness, i.e., detecting robustness violations caused by invalid inputs, while behavioral robustness
remains relatively under-explored [63].

Robustness Improvement Techniques. In their survey, Shahrokni et al. [63] conclude that
existing works mostly focus on the use of wrappers and encapsulation of existing software components
to improve robustness. These studies often delve into the source code of the software, examining
how error detection code and explicit exception handlers can filter out invalid inputs and erroneous
outputs and prevent the propagation of errors. Similar methods are also advocated in programming
guidelines such as defensive/robust programming [9] and practitioner-oriented books like [52, 10].

However, these methods also take the view of input-output relationships. While improving the
IO robustness of individual components can eventually impact the robustness of the machine as a
whole, they fail to provide a rigorous and systematic way of improving the behavioral robustness of
the machine.

On the other hand, contributions from the self-adaptive system community [48] and the run-time
assurance community [31] present methods on how to ensure a machine to maintain its functional-
ities or quality attributes at run time against uncertainties. Some of these approaches can be seen
as ways of improving behavioral robustness of a machine, even though the term “robustness” may
not be explicitly mentioned, or they may consider “robustness” with respect to a broader set of
properties other than pure safety and liveness, such as performance or availability [48, 22]. While
these methods can be utilized to improve the behavioral robustness of a machine and indeed inspire
our approach, one significant difference is that we focus on design-time robustness improvement
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whereas they assume run-time adaption or assurance.

In light of the current state of software robustness research, this work explores a method designed
to systematically and rigorously analyze, measure, and improve the behavioral robustness of a
machine design. It addresses a gap in the current research, manifested as a lack of systematic
reasoning and enhancing methods for software design robustness. Furthermore, this method can
facilitate a robust-by-design process for software.

1.4 Thesis Statement

Given a machine and its environment that can be formally modeled as a state-transition
system, we can systematically measure and improve the behavioral robustness of the
machine with respect to the environment and a system-level safety property.

1.5 Elaboration on Thesis Statement

Behavioral Robustness of Software Design. As detailed in the preceding sections, this work
focuses on the behavioral robustness of software designs. Specifically, a system is closed and consists
of a machine (i.e., the software) and its environment. The system is considered as a state-transition
system, and its behavior is characterized by a set of execution traces, each being a sequence of states
and transitions. A system-level property, i.e., a safety property or a liveness property, specifies
the intended behavior of a system. The unexpected behavior from the environment is characterized
by sequences of environmental events that occur at run time and are not defined in the assumed
environment. Therefore, this work investigates the behavioral robustness of a machine design that
captures the ability of it to continue satisfying a desired system-level property in the presence of
unexpected sequences of events from its actual operating environment.

Formal Reasoning. Our approach leverages formal methods to achieve our objectives of system-
atically and rigorously quantifying and improving robustness. Specifically, a formal state-transition
system serves as a natural representation for the behavior of a software system, and each trace in
such a formal model indicates a particular execution scenario. For instance, in a network protocol,
a sequence of events ⟨send, receive, acknowledge, get acknowledge⟩ depicts a normative execution
where the client sends a request and receives the acknowledgement from the server. In contrast, an
event sequence ⟨send,message lost⟩ illustrates a faulty scenario where the client’s request is lost
during transmission. With such a formal model, we can mathematically analyze the behavioral
robustness of a machine as a set of traces. In addition, it also enables systematic and automated
enhancement of robustness by generating a more robust machine model through modification or
synthesis.

Safety vs. Liveness. This work primarily focuses on behavioral robustness with respect to a
safety property. A safety property specifies the bad states that a system should avoid. We priori-
tize safety for several reasons: (1) it is widely studied in the literature and aligns intuitively with
developers’ objective of preventing bad behavior in a system, (2) ensuring safety is particularly
crucial for safety-critical and mission-critical systems, and (3) robustness challenges differ substan-
tially between safety and liveness properties, leading us to prioritize one over the other given the
limited time available for this research. Nevertheless, we do not completely disregard liveness in
this work, especially concerning robustness improvement. Given that a system simply losing all its
functionalities and entering a termination state is deemed safe but practically useless, we recognize
the importance of incorporating liveness as a crucial dimension when enhancing robustness.
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1.6 Approach Overview

The expected contributions of this work are: (1) a behavioral notion of robustness for software
designs and its computation method based on labeled transition systems, namely robustness analysis,
and (2) an approach for improving the behavioral robustness of a system design, namely design
robustification.

We consider a system S to consist of a machine M and an environment E, the composition of the
machine and the environment forms a closed system. Then, a typical software design task involves
answering the following question: Given machine M and environment E, does the composed system
satisfy a desired property P given the machine operating under the environment, i.e., M ||E |= P?

Then, in terms of robustness, we say the machine M should continue to satisfy the desired
property even under an environment E′ that deviates from the expected one specified by E, i.e.,
M ||E′ |= P . Specifically, E′ and E should contain the same set of events but differ in the set of event
traces they prescribe. The distinctions in the sets of traces are denoted as deviations, represented
by δ. These deviations may due to errors or natural changes in the actual environment. Finally,
the robustness is measured as the maximum possible set of deviations, denoted by ∆, such that the
machine continues to satisfy the desired property under these deviations. Conceptually, ∆ represents
the safe operating envelope of a machine, i.e., as long as the environmental deviations remain within
this envelope, the machine can guarantee property P .

Formalism. We utilize labeled transition systems (LTS) to model the discrete behavior of a ma-
chine and its environment. In an LTS, we explicitly model the sequences of events that occur in a
system, with the system states being implicitly defined. A trace in an LTS is a sequence of events,
and the behavior is the set of all traces. Furthermore, we consider safety properties in terms of LTS
in this work. A safety property is also an LTS that describes a set of traces, and we say a model T
satisfies a safety property P when the set of traces of T is a subset of those defined by P .

Robustness Analysis. We propose a formal behavioral notion of software robustness based on
LTS. Given a machine M , an environment E, and a safety property P , all modeled in an LTS, a
deviation of the environment is represented as a sequence of events (a trace). We measure robustness
∆ as a set of traces that are not defined in E under which M continues to satisfy P . For example, in
a network protocol, the trace ⟨send, receive, acknowledge, get acknowledge⟩ is a normative scenario
defined in E, assuming a perfect communication channel, whereas the trace ⟨send,message lost⟩ is
a deviation that can occur with an imperfect channel. Then, if M still satisfies property P under
this deviation trace, it belongs to robustness ∆.

We present an approach to compute robustness ∆ that contains all deviation traces under which
the machine M continues to satisfy property P . The computation process also facilitates robustness
comparisons. Additionally, in general, robustness ∆ may contain an infinite number of traces, which
is not easily comprehensible by the developers. Thus, we present an approach to partition ∆ into
a finite set of equivalence classes and sample representative traces from them, each trace represents
a group of traces that describe the same type of deviations. Finally, we use a deviation model to
generate explanations for those representative traces. An explanation describes what environmental
faults cause the environment to deviate from its expected behavior. The final output from this
analysis is a set of pairs of a representative trace and its corresponding explanation. Section 3.2
describes our approach in more detail.

Design Robustification. We propose an approach to synthesize new machine designs based
on an existing design, a safety property, and a deviated environment. Compared to the assumed
environment, a deviated environment is one that shares the same set of events but contains additional
deviation traces where the old design fails to satisfy the property. The goal of robustification is to
find a new design that is robust against the deviations in the deviated environment. Specifically, our
method considers four dimensions of robustification: safety, liveness, observability and controllability,
and cost.
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As defined in the thesis statement, our primary focus is on robustness with respect to safety.
However, ensuring safety may compromise liveness in the sense of losing certain desired functional-
ities. In an extreme case, safety can be trivially achieved by letting a machine enter a termination
state and do nothing. Therefore, while full support for robustness regarding liveness is beyond the
scope of this work, we aim for the robustification process to guarantee as much liveness as possible.
However, when certain safety and liveness properties cannot be satisfied simultaneously, one issue
may be the lack of observability and controllability of the machine. Intuitively, a machine that
can observe and control more events in the system can achieve more fine-grained control to better
prevent the propagation of errors and recover from the faults. Nevertheless, enhanced observability
and controllability often come at a higher cost. Therefore, our method needs to consider these four
dimensions.

Our proposed method consists of two components. The first component employs a wrapper
tactic, utilizing supervisory control theory [20] to generate new designs. It improves robustness by
monitoring events from the machine and the environment, disabling specific events to ensure the
safety property. To prevent excessive restrictions on liveness, we allow the extension of observability
and controllability of the new machine, however, at an additional cost. Therefore, the robustification
process is framed as a multi-objective optimization problem with two quality goals: (1) preserving
behavior from the original design and (2) minimizing cost of changes, measured by the extended
observing and control abilities. We introduce a novel algorithm for searching optimal redesigns, and
Section 3.3 provides a detailed description of this technique.

The second robustification component is the ongoing work of this thesis. The wrapper technique
may potentially disable certain critical machine functionalities even with extended observability and
controllability, especially when the desired safety property is exceptionally stringent. Therefore, the
second robustification process explores specification weakening as an additional tactic alongside the
wrapper tactic. Intuitively, by employing a weaker safety property, the system should be capable
of tolerating more deviations, as certain deviations would no longer lead to a safety violation.
Consequently, the new tactic involves weakening a potentially too-strong safety property, allowing
for improved robustness through the application of the wrapper tactic without disabling critical
system functionalities. Section 4.1 provides a detailed description of this technique.

Implementation and Evaluation. We implement all our proposed approaches in a tool named
Fortis. The tool includes a simple Graphical User Interface (GUI) for users to specify system models
and properties and run our methods to compute robustness and robustify a machine. We evaluate
the applicability and efficiency of our approaches through five case studies, which include a radiation
therapy machine, an electronic voting machine, network protocols, a medical infusion pump machine,
and a public transportation fare system.

The evaluation demonstrates the applicability of our robustness computation method across di-
verse case studies originating from various software application domains. The computed results,
specifically deviations, correspond to real-world erroneous scenarios that have been previously in-
vestigated in other domains. The evaluation also demonstrates that our robustification process
can successfully find optimal new designs robust against a deviated environment, across software
applications from different domains. Lastly, the efficiency of our robustness computation and robus-
tification methods is demonstrated through benchmarking against a set of problems derived from
our five case studies.

1.7 Expected Contributions

The expected contributions of this thesis include:

• Behavioral Notion of Robustness: We propose a behavioral notion of robustness for
software systems based on labeled transition systems, defining robustness as a set of event
traces not specified in the assumed environment, under which the machine continues to satisfy
a desired safety property.
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• Robustness Computation Approach: We provide an approach to compute and repre-
sent the behavioral robustness of a system. Additionally, the computation process facilitates
robustness comparisons.

• Robustification Approach: We introduce an approach to robustify a machine with re-
spect to a deviated environment and a safety property, employing two tactics: wrapper and
specification weakening.

• Implementation and Evaluation: We implement the proposed robustness computation
and robustification approaches in a tool, evaluating their applicability and efficiency through
five case studies.

1.8 Problem Scope and Plan

ML and CPS robustness. The initial focus of this work revolves around robustness for con-
ventional software systems and its robustification, making LTS a suitable formalism. However, this
formalism cannot be directly applied to ML systems or CPS. ML systems typically involve statis-
tical models trained and optimized against certain datasets, and their concrete behavior may be
challenging to discern, especially for complex structures like Deep Neural Networks (DNN) [38].
On the other hand, CPS interacts closely with the physical world, such as aircraft or autonomous
vehicles, often involving modeling, control, and manipulation of physical processes characterized by
differential equations or hybrid logic [47].

While our research interest extends to the robustness of ML systems and CPS, our preliminary
investigation [72] indicates that these domains may require significantly different methodologies.
The notion of robustness and the robustification techniques presented in this work would need non-
trivial theoretical extensions, such as the incorporation of probabilistic modeling and properties [6]
or leveraging statistical model checking [2]. Therefore, considering the time constraints of this thesis,
the extension of our proposed robustness methods to ML systems and CPS is beyond the scope of
this work.

Type of Uncertainties. This work investigates a specific type of robustness, termed behavioral
robustness. In this framework, uncertainties (deviations) are defined as sequences of environmental
events that are not specified by the assumed environment. Specifically, these sequences should only
differ in the order of events, while the set of events should remain unchanged. Hence, dealing with
other types of uncertainties, such as unknown events from the environment, is out of the scope of
this research. In addition, we also do not consider the probability associated with the occurrence of
these deviations.

Liveness Properties. The comprehensive support of liveness properties is beyond the scope of
this work. Introducing support for robustness computation and robustification concerning liveness
properties would demand significant theoretical extensions to our existing approach. Moreover,
our intuition suggests that robustness with respect to liveness properties poses a more intricate
challenge. One of the challenges is that our current robustification approach primarily employs the
idea of disabling actions to enhance robustness. However, addressing liveness properties may require
the addition of new behavior to the machine, such as incorporating retries in a network protocol.
This could potentially lead to a much larger solution space, making it a much more challenging task.
Therefore, we decided to concentrate on safety properties in this work.

Large-Scale Evaluation. While we implement our approaches and evaluate them on five case
studies that span diverse domains with real-world counterparts, it is important to acknowledge
that these case studies may not fully encapsulate the complexities inherent in real-world software
systems. Evaluating our approaches on large-scale real-world systems would require modeling such
systems with appropriate abstractions and potentially validating our analysis results against concrete

11



Description Est. Time Remains

A behavioral notion of robustness for conventional
software systems in LTS.

Completed

The computation of robustness w.r.t. safety proper-
ties.

Completed

Robustification w.r.t. safety properties by wrapper. CompletedMust-Haves

Robustification w.r.t. safety properties by specifica-
tion weakening.

3 months

Evaluation over a large-scale, real-world system. 3 months

May-Haves
Improving and evaluating the quality of our robust-
ness analysis tool, e.g., usability.

2 months

Robustness computation and robustification w.r.t.
liveness properties.

N/A

Won’t-Haves

Extensions of our approaches to ML systems or CPS. N/A

Table 1.1: Scope and current progress of this work. Green : The task is completed. Red : The

task has not started yet. Gray : The task is out of the scope.

implementations. Given the substantial engineering and research effort involved, it is considered a
stretch goal of this work.

Evaluation of the Tool. Lastly, our implementation, encapsulated in a tool, serves as a demon-
stration of our proposed approaches. Substantial engineering effort will be invested in integrating
the robustness computation and robustification techniques into a unified framework, with a focus
on improving computation efficiency. A simple GUI is implemented to provide essential interaction
capabilities for users. However, enhancing other quality attributes of the tool, such as usability,
demands non-trivial engineering effort. Therefore, evaluating the overall quality of the tool is also
considered a stretch goal beyond the primary objectives of this work.

Given the problem scope, Table 1.1 summarizes the research plan, where Must-Haves are the
essential components that must be delivered of this work, May-Haves are the components that we
would potentially deliver, and Won’t-Haves are the out-of-the-scope components.
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Chapter 2

Related Work

2.1 Robustness Definition and Measurement

According to the survey by Shahrokni et al. [63] and Laranjeiro et al. [46], most of the prior
works on robustness for conventional software systems focus on testing. Popular methods such as
fault injection [7, 54], model-based testing [68], and fuzzing [14, 51] are designed to evaluate the
robustness of a system by identifying invalid inputs or environmental faults that cause undesirable
system behavior, often measured by crashes or failures. A exemplar work is by Koopman et al. [42].
The approach generates invalid inputs for a set of identified system calls in an operating system and
uses a five-scale categorization, named CRASH, to categorize the severity of failures. The survey
conducted by Laranjeiro et al. in 2021 [46] provides a more comprehensive and up-to-date review of
the current state of research in software robustness assessment.

In contrast, we compute robustness as an intrinsic characteristic of the software, i.e., we sys-
tematically compute all the deviations that a machine can tolerate. In addition, we believe our
robustness metric (i.e., a set of deviation traces) can potentially be used to complement existing
robustness testing approaches. For instance, we could generate test scenarios based on traces in
robustness ∆ to verify that the implementation of the machine is robust against certain types of
environmental deviations.

Our formal robustness definition assumes discrete transition systems. Various formal definitions
of robustness for discrete systems have been investigated [64, 35, 36, 12]. One common characteristics
of these prior definitions is that they are all quantitative in nature, in that they all define certain
kind of function to measure the distance between traces and system behavior. For example, Bloem
et al. [12] propose a notion of robustness that defines, for a robust system, the ratio of the degree of
incorrect machine outputs over the degree of incorrect inputs should be small, where the degree is
measured by a function that maps every possible trace to a value indicating how “close” the behavior
is to a correct behavior. Similarly. Tabuada et al. [64] propose a notion that assigns costs to certain
input and output traces (e.g., a trace that deviates significantly from the expected behavior should
have a high cost) and stipulates that an input trace with a small cost should only result in an
output trace with a proportionally small cost. Henzinger et al. [35, 36] adopt the notion of Lipshitz
continuity from control theory to define robustness, where a system is K-(Lipschitz) robust if the
deviation (measured by a similarity function) in its output is at most K times the deviation in its
input.

In comparison, our notion of robustness is qualitative in that it captures the (possibly infinite) set
of environmental deviations under which the machine guarantees a desired property. These two types
of metrics are complementary and have their own potential use cases. While a quantitative metric
may directly enable ordering of design alternatives, our robustness contains additional information
about the types of the environmental deviations that could be used to improve robustness.

Tabuada and Neider propose an extension of linear temporal logic called robust linear temporal
logic (rLTL) [65]; similarly, Nayak et al. propose robust computation tree logic (rCTL) [55]. Both
of them use a multi-valued semantics to capture the different levels of satisfaction of a property;

13



e.g., given an expected property Gϕ, i.e., ϕ should always be true, then FGϕ is considered a weaker
version of it, i.e., eventually ϕ should always be true. Therefore, robustness can be measured as: a
“small” violation of the environment assumption must cause only a “small” violation of the property
satisfaction degree. In our work, we say a machine is robust against a deviation when the desired
property continues to be satisfied, following a binary criterion. Thus, our notion of robustness could
potentially be extended with rLTL or rCTL to compute robustness as an ordered set of deviations.

In safety engineering and risk management, operating envelope or safety envelope has been used to
represent the boundary of environmental conditions under which the system is capable of maintaining
safety [59]. This concept has been adopted in a number of engineering domains such as aviation,
robotics, and manufacturing, but as far as we know, has not been rigorously defined in the context of
software engineering. Therefore, our notion of robustness can be considered as one possible definition
of the safety envelope for software systems.

There exist alternative notions of software robustness that significantly differ from both IO
robustness and behavioral robustness. Schulte et al. [61] propose software mutational robustness
where robustness is measured by the fraction of random mutations to program code that leave a
program’s behavior unchanged. They focus on deviations (mutations) that occur in the code whereas
we focus on deviations as sequences of events from the environment. Petke et al. [57] argue that
a robust program should be able to stop the propagation of failures; and according to information
theory, they prospect that robustness might be captured as entropy loss in the code region succeeding
the code region where the faults occur. The higher is the entropy loss, the higher the likelihood the
propagation of the failure could be prevented.

2.2 Design Robustification

Research on robustness for discrete systems in control theory has not only provided formal definitions
of robustness but has also introduced methods for synthesizing a robust controller [12, 64, 35, 11,
41]. These works rely on a quantitative notion of robustness, involving numerical measures of
deviations. In contrast, our approach relies on a qualitative definition of robustness that centers
around deviations as discrete events, aligning more closely with the nature of software systems.
However, the foundational technique for our wrapper robustification method, namely supervisory
control synthesis [20], also originates from a sub-field of control theory dedicated to discrete event
systems.

Similar concepts of control have also been applied in the context of self-adaptive systems [48]
and run-time assurance [29, 31, 30] to dynamically enforce system requirements. For instance, in
the self-adaptive systems community, the MAPE-K adaption framework [48], including tools like
Rainbow [32], also employs a monitoring and actuation control loop to ensure a system to continue
satisfying certain properties against environmental uncertainties at run time. However, these run-
time approaches typically assume fixed sensing and actuating capabilities. By comparison, our work
focuses on robustifying a machine at design time, providing developers with the flexibility to extend
the sensing and actuating abilities by introducing additional observable and controllable events.

Robustification by wrapper. Our robustification by wrapper approach solves the problem of
synthesizing a new machine model that satisfies a desired property. Thus, it shares similarities
with model repair. Model repair addresses the problem that: Given system M and property P
where S ̸|= P , generates a new system S′ such that S′ |= P . Buccafurri et al. [18] propose a
formal definition of model repair for Computation Tree Logic (CTL) and present an approach to
find repairs using abductive reasoning. Similarly, Menezes et al. [53], Chatzieleftheriou et al. [21],
and Ding et al. [26] present repair approaches for CTL, α-CTL (which considers actions behind
transitions), Kripke Modal Structure (which contains must-transitions and may-transitions), and
Linear Temporal Logic (LTL), respectively. Our wrapper robustification approach can be considered
as a kind of model repair. However, it addresses how to enhance the machineM to tolerate deviations
in the environment E, whereas prior model repair works do not make distinction between the machine
and the environment of a system. Moreover, the existing works do not consider the cost of a repair
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or consider the cost based on only the syntactic changes of the model, e.g., adding or removing
states or transitions. However, our approach considers multiple semantic-based quality metrics of
repairs, i.e., the value of preserved behavior and the cost of events for observing or controlling the
machine and the environment.

We leverage supervisory control synthesis to generate new machine designs, where the closet
work is presented by Tun et al. [67] which also uses controller synthesis to generate new designs
that satisfy a desired property. Although their work does not explicitly aiming at improving the
robustness of a software system, they have the similar goal to revise a machine M to fulfill a security
requirement P in an environment E where the users might deviate from the expected behavior
causing security violations. Our wrapper approach and OASIS differ in the way they explore and
generate new designs: OASIS uses an abstraction-based technique to allow changing the sequence
of events in an machine to generate new designs that satisfy certain property, while our approach
allows adding events to be observed or controlled by the new designs. OASIS’s approach could
potentially be a complementary exploring method for us to search optimal robustification solutions.
In addition, OASIS does not consider optimizing designs for the two quality goals., i.e., minimizing
the cost of changes and preserving behavior from the old design.

Robustification by weakening The idea of weakening in the context of requirements engineering
[44, 3] is rooted in the recognition that environmental conditions may change over time and space. As
a result, original requirements might become inadequate or inconsistent with the new environment,
necessitating adaptation or weakening. This concept has been further explored in self-adaptive
systems [69, 19, 23].

In the work by Alrajeh et al. [3], the focus is on adapting system requirements to address
environmental deviations. The authors propose an approach that utilizes a learning technique to
automatically adapt system requirements specified in a goal model [45] with Metric Temporal Logic
(MTL) to changes in the environment. Similarly, Chu et al. [23] explore similar ideas in the context
of CPS with Signal Temporal Logic (STL). They introduce an extension to STL called weakened
STL, where the time bounds of temporal operators can be weakened to make a formula easier to
be satisfied. At run time, when a CPS is about to violate its system specification, they synthesize
a new control action that satisfies a minimally weakened formula. Additionally, Buckworth et al.
[19] present a run-time adaptation technique involving the weakening of LTL. In their work, when
a self-adaptive system violates its specification at run time, they learn a weakened specification
that aligns with the current environmental conditions and synthesize a new controller based on this
adjusted specification.

D’Ippolito et. al [27] also adopts the weakening concept and proposes a multi-tier control
approach for self-adaptation, where the developer provides a hierarchy of environment models
(E′, E′′, . . .) that embody different levels of uncertainty, and synthesizes different machines (M ′,M ′′,
. . .) to satisfy gradually weakened system goals (P ′, P ′′, . . .). Then, at run time, the system dynam-
ically switches between different controllers that best correspond to the current environment.

The adoption of the weakening and its extension to robustness in our work aligns with the
intuition that a weaker property can improve a system’s ability to tolerate more environmental
deviations, thereby improving its robustness. By combining this concept with the wrapper tactic,
we are able to identify additional feasible new designs that are robust against a given deviated
environment. Through this approach, the new designs may preserve more behavior from the original
design or incur lower costs.
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Chapter 3

Current Work

This chapter describes our current progress on behavioral robustness of software systems. Specifi-
cally, Section 3.1 introduces the necessary background on labeled transition systems and an example
to illustrate our approach. Section 3.2 describes our robustness definition and its computation. Sec-
tion 3.3 describes our approach on robustification by wrapper. Finally, Section 3.4 describes the
evaluation of our current approach.

3.1 Background and Motivating Example

We first introduce the necessary background on labeled transition systems. Then, we introduce a
radiation therapy machine example to illustrate our approach through out this chapter.

3.1.1 Labeled Transition Systems

A labeled transition system (LTS) T is a tuple ⟨S, αT,R, s0⟩ where S is a set of states, αT is a set
of events called the alphabet of T , R ⊆ S × αT ∪ {τ} × S defines the state transitions (where τ is a
designated event that is unobservable to the system’s environment), and s0 ∈ S is the initial state.
An LTS is non-deterministic if ∃(s, a, s′), (s, a, s′′) ∈ R : s′ ̸= s′′ or ∃(s, τ, s′) ∈ R; otherwise, it is
deterministic. An event a ∈ αT is enabled at state s ∈ S if ∃(s, a, s′) ∈ R; otherwise, a is disabled
at s.

A trace σ ∈ αT ∗ of LTS T is a sequence of observable events from the initial state. Then, the
behavior of T is the set of all the traces generated by T and is denoted beh(T ), which can also be
referred as the language of T .

Operators. For LTS T = ⟨S, αT,R, s0⟩, the projection operator ↾ exposes a subset of the alphabet
of T . Given T ↾A = ⟨S, αT ∩A,R′, s0⟩, for any (s, a, s′) ∈ R, if a /∈ A, then (s, τ, s′) ∈ R′; otherwise,
(s, a, s′) ∈ R′. The ↾ operator also applies to traces; σ↾A denotes the trace that results from removing
the occurrences of every event a /∈ A from σ.

The parallel composition || is a commutative and associative operator that combines two LTSs by
synchronizing on their common events and interleaving the others [8]. Given T1 = ⟨S1, αT 1, R1, s10⟩
and T2 = ⟨S2, αT 2, R2, s20⟩, T1||T2 is LTS T = ⟨S, αT,R, s0⟩ where S = S1 × S2, αT = αT 1 ∪ αT 2,
s0 = (s10, s

2
0), and R is defined as: For any (s1, a, s1

′
) ∈ R1 and a /∈ αT 2, we have ((s1, s2), a, (s1

′
, s2))

∈ R; for any (s2, a, s2
′
) ∈ R2 and a /∈ αT 1, we have ((s1, s2), a, (s1, s2

′
)) ∈ R; and for (s1, a, s1

′
) ∈ R1

and (s2, a, s2
′
) ∈ R2, we have ((s1, s2), a, (s1

′
, s2

′
)) ∈ R.

Properties. In this work, we consider a class of properties called safety properties [43], which define
the acceptable behaviors of a system. A safety property P can be represented as a deterministic
LTS, and we say that an LTS T satisfies P if and only if beh(T ↾αP ) ⊆ beh(P ).

We check whether an LTS T satisfies a safety property P = ⟨S, αP,R, s0⟩ by automatically
deriving an error LTS Perr = ⟨S ∪ {π}, αP,Rerr, s0⟩ where π denotes the error state, and Rerr =
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R∪{(s, a, π)|a ∈ αP∧ ̸ ∃s′ ∈ S : (s, a, s′) ∈ R}. With this Perr LTS, we test whether the error state
π is reachable in T ||Perr. If π is not reachable, then we can conclude that T |= P .

3.1.2 Example: Radiation Therapy Machine

We use a radiation therapy machine similar to the well-known Therac-25 machine [49] to illustrate
our approach on robustness computation and robustification. Figure 3.1 shows the labeled transition
systems of the main components of the machine, including (a) Treatment Interface (MI), which
allows an operator to choose the radiation mode (Electron or X-ray) and fire the beam, (b) Beam
Setter (MB), which switches the physical component for the two radiation modes, and (c) Spreader
(MS), which is inserted during the X-ray mode to attenuate the effect of the high-power X-ray beam
and limit possible overdose (as X-ray delivers roughly 100 times higher level of current than the
Electron beam). The overall behavior of the machine is the composition of the three components,
i.e., M = MI ||MB ||MS .

Figure 3.1: Labeled transition systems for a radiation therapy system (M = MI ||MB ||MS).

We consider an important safety requirement of the system that is the spreader must be in place
when the beam is delivered in X-ray mode. This requirement can be formally defined as a LTL
formula P 1:

G(BeamDelivered ∧XrayMode ⇒ InP lace)

Moreover, the task to be carried by an operator is specified as an environment model (E) in
Figure 3.2. In particular, it describes: In the normal treatment process, the therapist selects the
correct mode for a given patient by pressing either X or E, confirms the mode by pressing Enter,
and finally initiates the therapy by pressing B. By using a model checker [24], we can tell that the
machine satisfies the property under the normative task model, i.e., M ||E |= P .

3.2 A Behavioral Notion of Robustness

This section introduces our notion of behavioral robustness. Section 3.2.1 presents our definition of
robustness. Then, Section 3.2.2 presents the design questions that our analysis can answer. Finally,
Section 3.2.3 outlines the approach we have taken to compute and represent robustness.

1This property is later translated into a deterministic LTS for safety check.
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Figure 3.2: Labeled transition system for the operator task model (E).

3.2.1 Robustness Definition

In our work [71], we propose a new definition of robustness based on labeled transition systems.
It captures robustness as a set of environmental behavior under which the system can continue to
guarantee certain safety property.

Specifically, let M be a machine, E be its operating environment, both modeled in LTS, and P
be a desired safety property, where M satisfies the property under E, (i.e., M ||E |= P ). Machine
M is said to be robust against a set of environmental traces δ if and only if the machine continues
satisfying the desired property P under a new environment E′ that is capable of additional behaviors
in δ compared to the original environment E. Formally, we have:

Definition 3.2.1 (Robust System) Machine M is robust against a set of traces δ ⊆ αE∗ with
respect to environment E and property P if and only if M ||E |= P , δ ∩ beh(E) = ∅, and for E′ such
that beh(E′) = beh(E) ∪ δ, M ||E′ |= P .

The traces in δ are also called deviations with respect to the original environment E. For example,
in the radiation therapy machine, trace ⟨X,B⟩ is a deviation to the normative environment, and it
is easy to see that when applying this trace to the machine, the machine still satisfies the safety
property (as action B is disabled in state ConfirmXray). Therefore, we say the machine is robust
against the deviation ⟨X,B⟩.

Then, the robustness of machine M is defined as the largest set of deviations under which the
machine continues to satisfy property P . Formally, we have:

Definition 3.2.2 (Robustness) The robustness of machine M with respect to environment E and
property P , denoted by ∆(M,E,P ), is the set of traces δ such that M is robust against δ with respect
to E and P , and there exists no δ′ such that δ ⊂ δ′ and M is also robust against δ′.

Figure 3.3: Illustration of behavioral relationships between machine M , environment E, and robust-
ness ∆(M,E,P ).

Figure 3.3 illustrates the relationships between the behaviors of the machine, the environment,
and the robustness. For illustration purpose, we assume that they all have the same alphabet αA.
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The outermost box represents all the possible finite traces given αA. Then, beh(M) represents all
the possible behaviors permitted (accepted) by the machine; and beh(E) represents all the behaviors
of the normative environment.

Given safety property P , the behaviors of M can be classified into two sets: beh(Msafe), the set
of all behaviors that are permitted by the machine M and under which the machine satisfies P , and
the rest unsafe behavior (i.e., beh(M) \ beh(Msafe)) that lead to a violation (red area). Therefore,
for δ1 = beh(Msafe) \ beh(E), it represents the set of all deviations that the machine accepts and
is robust against. Meanwhile, δ2 = αA∗ \ beh(M) is the set of all deviations that the machine
does not accept, or in other words, disables.2 Thus, given Definition 3.2.1, we say machine M is
also robust against δ2. Hence, the robustness of the machine should consist of both δ1 and δ2, i.e.,
∆(M,E,P ) = δ1 ∪ δ2, the union of the two green areas.

For example, trace ⟨X,Enter, Up,Enter,B⟩ is a deviation that accepts by the machine and
under which the machine satisfies the property, which belongs to the deviation set δ1. On the other
hand, ⟨X,B⟩ is a trace disabled by the machine and thus under which the machine also satisfies the
property, which belongs to the deviation set δ2. Both of these deviations should be included in the
robustness set ∆(M,E,P ).

3.2.2 Design Questions

Given our robustness definition, we can answer the following design questions with respect to ro-
bustness.

First of all, we can compute the robustness as defined in 3.2.2, i.e.,

Problem 3.2.1 (Robustness Computation) Given a machine M , an environment E, and a
safety property P , compute the robustness ∆(M,E,P ).

Moreover, we can answer robustness comparison questions as follows.

Problem 3.2.2 (Design Comparison) Given machines M1 and M2, an environment E, and a
safety property P such that αM1 = αM2, compute set X = ∆(M2, E, P )−∆(M1, E, P ).

This analysis allows us to compare a pair of designs on their robustness given the same environ-
ment and property. M2, for example, may be an evolution of M1; and thus the result of this analysis
indicates precisely how M2 is robust against some deviations that M1 is not. On the other hand,
∆(M2, E, P ) may not necessarily subsume ∆(M1, E, P ) indicating the design trade-offs that being
robust against certain deviations may lead to violations under other deviations.

Another similar type of analysis is to compare the robustness of a single machine under different
properties:

Problem 3.2.3 (Property Comparison) Give a machine M , an environment E, and safety
properties P1 and P2, compute set X = ∆(M,E,P2)−∆(M,E,P1).

A use case of this analysis is that given a stronger safety property P1 and a weaker property P2

where P2 might be easier to satisfy, the result of this analysis can tell us exactly which deviations
the system becomes robust against under the weaker safety property. It indicates the design trade-
offs between safety and fault tolerance and may be useful in the context of requirements weakening
[23]. In other words, since in general improving robustness might introduce additional complexity
to a system, it may be more cost-effective to design a system to be robust against the most critical
requirements [39].

2There isn’t a unified interpretation of these “unaccepted” behaviors in LTS. It could be interpreted as “undefined”
or “disabled”. In this work, we assume the “disabled” interpretation.

19



Figure 3.4: Overview of the robustness computation process.

3.2.3 Robustness Computation

Overview. Figure 3.4 shows the overall process for the robustness computation. Given the LTS
of the machine M , the environment E, and the safety property P , we first compute the weakest
assumption ofM with respect to E and P , which then is used to compute the model of the robustness
∆. In general, ∆ may be infinite, and not in a form that can be easily comprehensible by the user.
Thus, we generate a succinct representation of it. Specifically, we partition ∆ into a finite set of
equivalence classes, each of which contains traces that describe the same type of deviation, and then
sample representative traces from those classes. Finally, we take a deviation model D as input to
generate explanations that describe how the environment could deviate from the normative behavior
in a particular way. The final output of the process is a set of pairs of a representative trace and its
explanation.

Weakest assumption and robustness. According to our robustness definition (Definition 3.2.2)
and the illustration in Figure 3.3, robustness consists of two sets of behaviors: (1) the deviations
accepted by the machine and under which the machine can guarantee the safety property, and (2)
the deviations that are disabled by the machine. In [71], we present an approach to compute it using
the weakest assumption of a machine.

In assume-guarantee style of reasoning [34], given a machine M , the environment E, and a
property P , the weakest assumption is the largest possible environmental behavior under which the
machine satisfies the property. More formally:

Definition 3.2.3 (Weakest Assumption) The weakest assumption of machine M with respect
to environment E and property P , denoted by W (M,E,P ), is an LTS such that

∀E′ : E′||M |= P ⇔ E′ |= W (M,E,P )

We will simply use W to refer W (M,E,P ) if the context is unambiguous. Therefore, given
this definition, the weakest assumption W should include all the behaviors in beh(Msafe) plus the
behaviors in δ2 = αA∗ \ beh(M), as shown in Figure 3.3. Thus, the robustness of a machine is
equivalent to its weakest assumption minus the behaviors of the normative environment, i.e.,

∆(M,E,P ) = beh(W ) \ beh(E) (3.1)

In our work, we leverage the approach by Giannakopoulou et al. [33] to generate the weakest
assumption.

Robustness comparison. Base on the robustness computation process, we can also define the
robustness comparison process. Specifically, to compare the robustness of two machine designs, the
set X = ∆(M2, E, P )−∆(M1, E, P ) can be computed by:

X = beh(W (M2, E, P )) \ beh(W (M1, E, P )) (3.2)
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Similarly, to compare the robustness of one machine under two different properties, the set X =
∆(M,E,P2)−∆(M,E,P1) can by computed by:

X = beh(W (M,E,P2)) \ beh(W (M,E,P1)) (3.3)

Representative traces. Given the computation process, robustness is computed as ∆ = beh(W )\
beh(E). In general, this ∆ may represent infinite number of traces and may not be readily com-
prehensible by the user without a proper representation. Therefore, we propose a succinct, finite
representation of robustness. The key idea behind this is that many traces in ∆ capture a similar
type of deviation (e.g., message loss in a network communication system or a human operator mis-
takenly skipping an action), and thus can be grouped into a same equivalence class. Then, we can
generate one or multiple representative trace(s) from each equivalence class to represent a group of
behaviors.

For example, in the radiation therapy machine, we can use trace ⟨X,B⟩ to represent an equiva-
lence class that contains a group of deviations that all have ⟨X,B⟩ as their prefix, where ⟨X⟩ is the
shortest normative trace and B is the first action to deviate from the normative environment. More
details about the representative-trace generation can be found in our paper [71].

Deviation explanations. Representative traces describe how the environment deviates from the
normative environment as observed by machine M . However, they do not capture how the internal
faults of the environment could have caused this deviation. Therefore, we propose a method for aug-
menting the representative traces with additional domain-specific information about the underlying
causes behind the deviations by introducing a deviation model.

Figure 3.5: A deviation model D for the radiation therapy machine.

For example, Figure 3.5 is a deviation model for the radiation therapy machine. It specifies that
from state ConfirmMode, the operator might commit a type of error called omission error [17, 16],
i.e., omitting Enter action and pressing B instead, which is specified as the additional transition from
ConfirmMode to FireBeam on an faulty event Omission. Then, we would generate an explanation
for the representative trace ⟨X,B⟩ as ⟨X,Omission,B⟩.

3.3 Robustification by Wrapper

This section provides an overview of our work on robustifying system designs by wrapper [73].
In Section 3.3.1, we first introduce the necessary background on supervisory control, which is the
underlying technique we rely on to synthesize new designs. Section 3.3.2 and Section 3.3.3 describes
the definitions of our robustification problems. Finally, Section 3.3.4 presents the algorithm to solve
the robustification problems.

3.3.1 Supervisory Control

Our proposed robustification approach leverages techniques from an area of control theory called
supervisory control [20]. In the context of supervisory control, it assumes an “uncontrolled” system
(also called plant), which in our context would be the composition of a machine and its environment
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(M ||E), for which a desired property needs to be enforced. The premise is that the plant may not
satisfy the property on its own, and it needs to be “controlled” by restricting its behavior to a
subset of its original behavior. The control or restriction is done by a component named supervisory
controller, which can observe certain events in the plant and disable some events to occur.

Given a deterministic LTS G as the model of a plant that needs to be controlled, a controller S
for G is a function that maps any trace in beh(G) to a subset of events in αG, i.e., S : beh(G) → 2αG.
Then, given a trace σ ∈ beh(G), S(σ) defines the set of events that G is allowed to perform after σ.

A typical controller S has limited actuation and sensing capabilities. These limited capabilities
are described by the pair of partitions of αG: (1) αGc and αGuc, which represent the sets of
controllable and uncontrollable events; and (2) αGo and αGuo, which represent the sets of observable
and unobservable events. Intuitively, a controller only perceives events in αGo and can only disable
events in αGc. Therefore, we can formally define a controller as follows:

Definition 3.3.1 (Supervisory Controller) A supervisory controller is a function

S : beh(G↾αGo) → 2αG s.t. ∀σ ∈ beh(G↾αGo) : αGuc ⊆ S(σ)

From this definition, the control enforced by a controller can change only after some observable
event occurs. Also, in our work, we assume that every controllable event is observable, i.e., αGc ⊆
αGo.

A controller S can also be represented as a deterministic LTS, where given trace σ ∈ beh(G),
only events in S(σ) are enabled at the state reached after executing σ. In the following sections,
unless explicitly specified, S refers to the LTS representation of a controller. Then, the behavior
defined by applying a controller S to G (i.e., plant under control) can be represented by beh(S||G).

Finally, the goal of supervisory controller synthesis is to find a controller S over plant G to
achieve property P :

Definition 3.3.2 Given plant G with controllable events αGc and observable events αGo, αGc ⊆
αGo, and property P , a controller synthesis problem C(G,P, αGc, αGo) searches for a minimally
restrictive controller S such that S||G |= P .

The synthesis should generate a controller that is minimally restrictive, i.e., it should disable
only the necessary transitions that would eventually result in a property violation, and retain as
much behavior as possible of the original plant. Supervisory control theory provides algorithmic
techniques for computing such a controller; more details can be found in [20].

3.3.2 Basic Robustification Problem

According to our robustness definition, we say a machine is robust against a set of deviations δ
when give an environment E′ such that beh(E′) = beh(E) ∪ δ, the machine continues to satisfy the
property, i.e., M ||E′ |= P . In contrast, robustification deals with the opposite case, i.e., given some
intolerable deviations δ̄ such that M ||E′ ̸|= P , find a new machine M ′ such that M ′||E′ |= P ; and
the process for finding the new design M ′ is called robustification.3

Formally, we define the process of robustifying a design as follows:

Definition 3.3.3 Given machine M , environment E, intolerable deviations δ̄, and property P such
that M ||E |= P , and let E′ be the deviated environment such that beh(E′) = beh(E) ∪ δ̄ and
M ||E′ ̸|= P , the goal of robustification, Rb(M,E, δ̄, P ), is to find an LTS M ′ such that M ′||E′ |= P .

For example, Figure 3.6 is another deviated environment E′ under which the original design M
is not robust. Specifically, a counterexample ⟨X,Commission, Up,E,Enter,B⟩ depicts a scenario
where the user mistakenly selects the X-ray mode and uses Up to correct the selection and then fire
the beam. However, the beam mode may still be in transition from X-ray while the spreader is out
of place which causes a safety violation. Therefore, the robustification problem defines the process

3To distinguish from the deviations δ that the machine is robust against, we will use δ̄ to represent deviations that
the original machine is not robust against, namely intolerable deviations.
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Figure 3.6: A deviated environment model E′ with commission errors for the radiation therapy
machine, under which the original design M is not robust.

to find a new therapy machine design M ′ such that M ′ is robust against this deviated environment.
A solution to this problem is the redesign shown in Figure 3.7 where the interface will synchronize
on the beam mode to be correctly set.

Figure 3.7: A redesign of the radiation therapy machine. In particular, we show only the redesigned
interface where the operator can fire the beam until the mode switch has completed.

3.3.3 Optimal Robustification Problem

However, not every solution to the basic robustification problem may be desirable to the developer,
especially when we focus on safety properties. Safety properties often specify that a system should
not enter some bad states, a naive way to robustify any system would be removing behaviors;
however, this may also result in a system that can do nothing useful.

For example, to robustify the radiation therapy machine against the deviated environment in
Figure 3.6, one could remove all the B transitions; however, in this way, the machine can never fire the
beam to start a treatment. One could also remove all the Up transitions from the interface; however,
it does not allow the operator to ever change the beam mode. Neither of these redesigns would be
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desirable, in that although they can guarantee safety, they also give up on essential functionalities
of the system.

Quality metrics for robustified designs. To enable generation of more “desirable” solutions,
we consider two quality metrics for robustified redesigns: (1) the redesign M ′ should retain as much
of the important functionality from the original design M as possible, and (2) the cost of modifying
M to M ′ should be small.

For the first quality, we introduce the notion of preferred behavior.

Definition 3.3.4 A preferred behavior v is an execution trace that represents an operational sce-
nario that the developer wishes an LTS T to contain, i.e., v ∈ beh(T ↾αv), where αv refers to the
events in trace v.

For simplicity of notation, we denote it by v |= T . Then, retaining as much behavior from the
original design as possible can be formulated as maximizing the number of preferred behavior v’s
such that v |= M ||E and v |= M ′||E′. Formally:

Definition 3.3.5 Give a set of preferred behaviors V = {v1, v2, . . . , vn}, we state V |= T for some

LTS T if and only if
∧

vi∈V

vi |= T .

Then, we can associate each scenario vi with a different importance value to quantitatively
measure the amount of behavior retained by M ′ in terms of the total importance value of the subset
of preferred behaviors V ′ ⊆ V that satisfy V ′ |= M ′||E′.

For example, in the radiation therapy machine, one can define preferred behaviors:

v1 : ⟨X,Up,E,Enter,B⟩, and v2 : ⟨E,Up,X,Enter,B⟩

to specify the desire that the user should be able to switch from X-ray mode to Electron beam mode
using the Up button, and vice-versa.

For the second property, we propose to use the set of environment and machine events that are
observed or controlled by the machine to approximate the cost of a design. Intuitively, to observe
certain events, the machine should implement proper detectors or sensors; and it is often more costly
to control (enable or disable) certain events to occur. More precisely, we consider a pair of event sets,
A = (Ac, Ao), where Ac, Ao ⊆ αE ∪ αM , that are controllable and observable, respectively, for the
purpose of robustification. Furthermore, each event in A is associated with a cost measure to reflect
the effort of implementing its actuation or sensing capability. Thus, the total cost of robustification
can be measured as the sum of the individual costs of the events in A′ ⊆ A that are used to modify
the machine.

For example, one could assign a moderate cost to event SetXray and SetEBeam for observability
to reflect the cost of changes to implement sensing capability in the interface to synchronize on mode
switching. They could also assign a minor cost to event B for controllability to reflect the cost to
disable B accordingly to avoid accidentally firing the wrong beam.

Robustification as multi-objective optimization. Intuitively, a larger set of events for robus-
tifying a machine allows a more fine-grained control, which can help retain more behavior from the
original design but also leads to a higher cost. Thus, given the two quality metrics, the optimal
robustification problem can be formulated as a multi-objective optimization problem where devel-
opers need to balance the trade-offs between maximizing preferred behaviors and minimizing cost
of changes.

Specifically, given a robustification problem Rb(M,E, δ̄, P ), preferred behaviors V , and modifi-

able events A, let R⃗ = ⟨M ′, V ′, A′⟩ be a solution such that M ′ is a valid robustified design, V ′ ⊆ V
is the satisfied preferred behavior, and A′ = (A′

c, A
′
o) is the subset of events used for robustification.

Then, we can define the following objective function:

U⃗(⟨M ′, V ′, A′⟩) = ⟨UV (V
′), UA(A

′)⟩
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Figure 3.8: The overall process for solving optimal robustification problems.

where UV (V
′) is the amount of utility gained from fulfilling the preferred behaviors, which should

be positive, and UA(A
′) is the total cost of events used to redesign M ′, which should be negative.

Finally, the optimal robustification problem can be defined as follows:

Definition 3.3.6 Given a robustification problem Rb, a set of preferred behaviors V such that V |=
M ||E, and a set of available events for robustification A, the goal of Opt(Rb, V,A) is to find one

or more solutions R⃗ = ⟨M ′, V ′, A′⟩ such that M ′ is a solution to problem Rb, V ′ |= M ′||E′, and R⃗

maximizes the objective function U⃗ .

There could be more than one optimal solutions to this problem. It would be hard for developers
to mentally compute the trade-offs between different design alternatives. Therefore, we then propose
an algorithm that leverages supervisory control synthesis to generate a set of optimal redesigns.

3.3.4 Optimal Robustification Method

First, we show that a basic robustification problem can be reduced to a supervisory controller
synthesis problem as follows:

Theorem 3.3.1 Given a basic robustification problem Rb(M,E, δ̄, P ), let S be a solution to the
controller synthesis problem C(G,P, αGc, αGo), where G = M ||E′ and αGc ⊆ αGo ⊆ αG. Then,
M ′ = S||M is a solution to the robustification problem, where αM ′ = αM ∪ αGc ∪ αGo.

Then, given the characteristics of supervisory control synthesis, by default, it generates the
minimally restrictive controller (Definition 3.3.2), which aligns with our goal of retaining as much
behavior as possible. Also, the use of controllable and observable events to synthesize a controller
aligns with our goal of using actuation and sensing capability to measure the cost. More precisely,
we have the following theorem:

Theorem 3.3.2 Given an optimal robustification problem Opt(Rb, V,A) and a corresponding con-
troller synthesis problem C(G,P, αGc, αGo), supervisory controller synthesis generates a controller
S such that M ′ = S||M satisfies the maximal possible V ′ ⊆ V for A′ = (αGc, αGo).

Therefore, we formulate an algorithm to solve the optimal robustification problem by using
supervisory controller synthesis as a searching primitive. Figure 3.8 illustrates the overall process
of our approach. At a high-level, a design optimizer generates the next searching target (V ′, A′).
Subsequently, we solve a supervisory control synthesis problem with the given A′ and verify if M ′

satisfies V ′. The design optimizer stores this candidate solution M ′ and iteratively generates the
next searching target. Ultimately, the optimizer produces all optimal new designs.

We leverage Supremica [50], a state-of-the-art solver, to solve the synthesis problems, and the key
contributions of our algorithm are heuristics for efficiently searching candidate tuples of (V ′, A′) to
improve the overall performance of the solving process. Details of our solving process and heuristics
can be found in [73].
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3.4 Evaluation of Current Approach

We implement our proposed robustness computation and robustification by wrapper approach into
a tool named Fortis4. We then illustrate the applicability and performance of our approach through
experiments over a set of case studies.

3.4.1 Case Studies

Except the radiation therapy machine, we briefly summarize other case studies we used. Details
about the case studies can be found in [70, 71, 73].

Voting Machine. We consider a simplified design of an electronic voting system (called ES&S
iVotronic, described in more detail in [67]), that was used in several state-wide elections in the U.S.
and was involved in an election fraud [60]. In this machine, for the last step of a voting process,
the voters were asked to confirm their vote by pressing the confirm button. However, some voters
would inadvertently forget to do so before exiting the voting booth. This would allow a malicious
official to enter the booth and change the voter’s vote. Thus, in our model, we set a safety property
to guarantee that the machine should record each voter’s selection exactly as made by that voter.

Network Protocols. Consider the problem of transmitting a sequence of messages between a
pair of nodes (sender and receiver). We consider two protocols for network communication: (1)
A naive protocol where the sender assumes a perfectly reliable communication channel, and (2)
the Alternate Bit Protocol (ABP) [66], which is designed to guarantee integrity of messages over
unreliable channels (e.g., message loss or duplication). We specify the desired property as the input
and output should alternate, i.e., the sender sends a new message only after the receiver receives the
previous one.

Oyster. We consider the Oyster card fare collection protocol used in public transportation in
London, UK (described in [62]). In this system, the user taps their card on the entry gate at the
beginning of their journey and on the exit gate at the end. The protocol also allows the user to pay
their fare through other means such as credit cards and mobile payments. In the normative case,
the user chooses the appropriate method of payment, and taps in and out with the same method.
The property of interest here is avoiding card collision, where two different methods of payment are
used in the same journey.

Infusion Pump. We model an infusion pump machine for dispensing medication to patients
through tube lines [15]. The machine also includes a built-in battery that activates when the power
cable is unplugged. Normally, the operator plugs in the device, configures the medication dose and
starts the dispensation. However, if the cable is accidentally unplugged and battery runs out during
dispensation continues, this might cause serious medical accidents, such as overdose. Thus, the
property is to guarantee that if the machine loses power, it should immediately stop any on-going
dispensation.

3.4.2 Evaluation Results

For each of the above case studies, we used Fortis to (1) compute the robustness of the system and
(2) synthesize robustified designs against a deviated environment model.

Table 3.1 summarizes the results for robustness computation. It shows that although the worst-
case complexity of the computation process is exponential to the size of the machine M and property
P . i.e., O(2|M ||P |), Fortis can efficiently compute robustness even for a very large model like Pump-3
with 19,435 states in 1.227 seconds.

4https://github.com/cmu-soda/fortis-core
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Table 3.1: Evaluation results of robustness computation. All problems were run on a
Linux Machine with a 3.6GHz CPU and 24GB memory under a 30-minute timeout.

|M ||P |∗ Time (s)

Therapy 20 0.025

Naive 41 0.029

ABP 23 0.033

Voting-1∗∗ 53 0.033

Voting-2 277 0.066

Voting-3 821 0.106

Voting-4 1,829 0.188

Pump-1 163 0.036

Pump-2 1,679 0.149

Pump-3 19,435 1.227

Oyster 1,729 0.280

∗ |M ||P | is the number of states of the composition of machine M and property P ,
and the worst-case complexity of the computation is O(2|M ||P |).

∗∗ In Voting-n, n represents the number of voters and officials in the system; simi-
larly, n in Pump-n is the number of the dispensation lines connected to the pump.

Table 3.2 provides a summary of the results for robustification using the wrapper tactic. Robusti-
fication poses a significantly more complex problem with a much larger search space. The worst-case
complexity is exponential in the number of states of machine M and the deviated environment E′,
in addition to the number of preferred behaviors V and controllable/observable events A—expressed
as O(2|V |+|A|+|M ||E′|). Through our experiments, it became evident that controller synthesis often
becomes the bottleneck. The time to solve one synthesis instance increases rapidly with the growing
size of the system. Moreover, for the same problem, synthesis becomes more challenging as fewer
controllable and observable events are provided, while minimizing the cost.

In comparison to a naive searching strategy using brute-force (depicted under the Naive columns),
Fortis addresses the performance challenges by introducing several search heuristics. These heuristics
aim to prune the search space and reduce the number of synthesis calls, as detailed in [73]. As
shown in the With heuristics columns, our search heuristics effectively reduce the required number
of synthesis calls and significantly improve the overall searching performance. Notably, in Voting-2,3
and Pump-2,3, the naive search approach timed out after 30 minutes, while our search heuristics
successfully found solutions.
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Table 3.2: Evaluation results of robustification. All problems were run on a Linux Machine with a
3.6GHz CPU and 24GB memory under a 30-minute timeout.

Naive With heuristics

|V |∗ |A| |M ||E′| #Synth. Time (s) #Synth. Time (s)

Therapy 4 5 21 32 0.812 6 0.469

Naive 2 8 14 1 0.226 1 0.242

ABP∗∗ - - - - - - -

Voting-1 1 13 12 2,576 24.100 9 0.507

Voting-2 1 23 31 - T/O 16 1.908

Voting-3 1 32 44 - T/O 21 20.172

Voting-4 1 41 57 - T/O - T/O

Pump-1 2 12 104 2,304 59.584 13 1.129

Pump-2 4 16 760 - T/O 17 10.817

Pump-3 6 20 6,248 - T/O 21 457.839

Oyster 2 4 900 16 1.799 1 0.686

∗ |V | is the number of preferred behaviors, |A| the number of controllable and observable events
with cost, |M ||E′| the number of states of machine M composed with deviated environment E′.
The size of the search space is approximately O(2|V |+|A|+|M ||E′|). #Synth. is the number of calls
to the controller synthesizer.

∗∗ Robustification is not applicable to ABP as it already satisfies P under the given deviations.
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Chapter 4

Proposed Work

4.1 Robustification by Weakening

The wrapper robustification approach leverages supervisory control theory to synthesize a controller
(wrapper) that observes and controls the inputs and outputs of a machine. Formally, for a given
problem M ||E′ ̸|= P , we synthesize a wrapper C such that M ′||E′ |= P , where M ′ = M ||C.
However, in cases with a strong safety property, we may not be able to find such a controller, or the
resulting design M ′ might become overly restrictive, leading to the loss of certain functionalities.
Another challenge arises when the wrapper demands additional observability and controllability of
the machine, resulting in a high cost of changes.

To address these challenges, we introduce another robustification tactic alongside the wrapper
tactic, called specification weakening. The goal of weakening is to identify a weaker property P ′ such
that, after applying the wrapper tactic against P ′, we can find a new design that is not excessively
restrictive or is cost-effective. Formally, for a given problem M ||E′ ̸|= P , we aim to find a weaker
property P ′ such that P ⇒ P ′, and we can generate a new design M ′ with the wrapper tactic such
that M ′||E′ |= P ′. Additionally, this M ′ should be less restrictive or more cost-effective than a
solution generated by only the wrapper tactic.

For instance, in the radiation therapy machine example, we can consider a stronger safety prop-
erty that includes two aspects: (1) over-dose prevention, the spreader must be in place when the
beam is delivered in X-ray mode, and (2) under-dose prevention, the spreader must be out of place
when the beam is delivered in Electron beam mode. This can be formally defined as:

G
(
BeamDelivered ⇒ (XrayMode ⇒ InP lace) ∧ (EBeamMode ⇒ OutP lace)

)
The initial design depicted in Figure 3.1 is not robust against the following two classes of devi-

ations: (1) ⟨X,Up,E,Enter,B⟩, where the user switches from X-ray to Electron beam, potentially
resulting in an over-dose issue; and (2) ⟨E,Up,X,Enter,B⟩, where the user switches from Elec-
tron beam to X-ray, potentially leading to an under-dose issue. By applying our robustification by
wrapper tactic, feasible solutions include:

1. Observing SetXray and SetEBeam events to synchronize on the completion of mode switching
and disabling Up button accordingly to avoid firing the wrong beam.

2. Disabling all Up transitions to disallow mode switching so that there’s no need to observe the
SetXray and SetEBeam events.

3. Observing only one of the Set event to allow mode switching from either X-ray to Electron
beam or vice-versa.

The wrapper robustification method incorporates a simplified form of specification weakening.
We have introduced the concept of preferred behavior, which is a lightweight representation of
liveness properties. The robustification process permits giving up certain preferred behaviors to
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produce a wrapper with a reduced cost but that disables more transitions. In the aforementioned
example, one could specify ⟨X,Up,E,Enter,B⟩ and ⟨E,Up,X,Enter,B⟩ as preferred behaviors,
and solutions 2 and 3 choose to forgo these preferred behaviors.

However, for the specification weakening tactic, we allow the safety property to be weakened as
well. For instance, the under-dose scenario caused by ⟨E,Up,X,Enter,B⟩ might be considered less
critical and acceptable. Therefore, by weakening the safety property and removing the under-dose
case, we could identify another feasible solution where the system does not need to observe the
SetEBeam event and disable Up for the under-dose scenario. In essence, the weakening of the
safety property increases the space of feasible solutions, enabling us to find solutions with a lower
cost or those that satisfy additional preferred behaviors.

The concept of weakening originates from requirements engineering [3], when environmental
conditions are changed over time and space, the original requirements may not be adequate and
consistent thus must be adapted. One key challenge of requirements weakening is how to formally
define weakening and synthesize a weakened property. Prior research has explored weakening with
goal modeling [3, 44], Fuzzy Temporal Logic [69], LTL GR(1) specification learning [19], and Signal
Temporal Logic [23]. However, these approaches do not directly apply to our case as we consider
safety properties defined in LTS. Therefore, a critical research question for us is to develop a new
methodology for weakening a safety property defined in LTS.

4.2 Fortis: A Tool for Robustness Analysis

Fortis [70] is the tool that implements all our proposed robustness analysis and robustification
techniques. We aim to make it an extensible toolbox and framework for robustness analysis. Its
current implementation primarily focuses on realizing our proposed approaches efficiently. However,
its extensibility and usability have not been adequately supported. Therefore, another stretch goal
of this work is to enhance the quality of Fortis.

For instance, our existing implementation provides a simple GUI to allow basic interaction ca-
pabilities for users. We could expand this GUI to improve its usability and integrate visualizations
for system models and repairs. However, this not only involves engineering effort but also poses
a research challenge in intelligently visualizing a synthesized repair and effectively explaining it to
users.

4.3 Large-Scale Case Study: Open EMR

Another stretch goal of this work is to apply our approaches to a large-scale, real-world case study.
One promising case study is Open EMR1, an open source electronic health records and medical
practice management software. Over years of development contributed and maintained by the open
source community, it provides a rich set of features including: scheduling, e-Prescribing, medical
billing, clinical decision rules, lab integration, and reporting. Therefore, we can explore how well
our proposed techniques can be applied to such a real-world medical software.

The research task involves understanding the usage and implementation of Open EMR and
creating proper abstract models of it. Finally, we also need to identify meaningful safety properties
for our robustness analysis. New research challenges might also emerge during our investigation.

1https://www.open-emr.org/
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